Bayesian optimisation to select Rössler system parameters used in Chaotic Ant Colony Optimisation for Coverage
نویسندگان
چکیده
منابع مشابه
Niching for Ant Colony Optimisation
Evolutionary Computation niching methods, such as Fitness Sharing and Crowding, are aimed at simultaneously locating and maintaining multiple optima to increase search robustness, typically in multi-modal function optimization. Such methods have been shown to be useful for both single and multiple objective optimisation problems. Niching methods have been adapted in recent years for other optim...
متن کاملCandidate Set Strategies for Ant Colony Optimisation
Ant Colony Optimisation based solvers systematically scan the set of possible solution elements before choosing a particular one. Hence, the computational time required for each step of the algorithm can be large. One way to overcome this is to limit the number of element choices to a sensible subset, or candidate set. This paper describes some novel generic candidate set strategies and tests t...
متن کاملAnt Colony Optimisation for Job Shop Scheduling
A recent adaptive algorithm, named Ant System, is introduced and used to solve the problem of job shop scheduling. The algorithm was first introduced by Dorigo, Maniezzo and Colorni in 1991 and is derived from the foraging and recruiting behaviour observed in an ant colony. It can be applied to combinatorial optimisation problems. This paper outlines the algorithm’s implementation and performan...
متن کاملModel Checking the Ant Colony Optimisation
We present a model for the travelling salesman problem (TSP) solved using the ant colony optimisation (ACO), a bio-inspired mechanism that helps speed up the search for a solution and that can be applied to many other problems. The natural complexity of the TSP combined with the selforganisation and emergent behaviours that result from the application of the ACO make model-checking this system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Science
سال: 2020
ISSN: 1877-7503
DOI: 10.1016/j.jocs.2019.101047